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ABSTRACT

This cbm;FM examines a number of advanced military information

processing problems that entail computational tasks distributed over

space. Communicational restrictions and other factors in these

applications make it appropriate to consider networks of loosely coupled

distributed artificial-intelligence (DAI) systems. Among the important

conceptual difficulties of designing such networks is the problem of

representing and using information about what one part of the network

"believes" about another part. We consider in some detail various

aspects of this problem and briefly describe some potential solutions..

/

I DISTRIBUTED PROBLEMS

Recent applications of artificial-intelligence (AI) techniques have

involved tasks that were relatively localized in space. Some prominent

examples of such applications may be found in factory automation, photo

interpretation, intellig.nt database access, expert consulting systems,

automatic programming, and natural-language processing systems. Yet

there are several important problems whose intrinsic spatial

distribution dictates a corresponding distribution of the computational

resources needed in solving the problem. In this chapter we give

examples of some of these "distributed" problems and discuss some

current research work in distributed artificial intelligence (DAI).

Our first example of a distributed problem is a "sensor net" whose

nodes are dispersed over an area perhaps thousands of miles in extent.

Each node might contain, for example, radar, infrared, acoustic, or

other sensors and computational resources to process the various signals

it receives. The processing done at each node would normally be

conditioned by information received (over a communication channel) from

other nodes. Networks such as these might be designed to cooperatively

detect and track objects such as aircraft, missiles, or marine vessels.

It is not hard to imagine versions of such a system in which
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communication between nodes would be restricted. We can probably assume

that the computational power at each node would be quite high. An

important consideration is that the performance of the entire net should

degrade only modestly if a small number of nodes became inoperative.

Although we have tacitly assumed that the nodes in the sensor net

are immobile, they could in fact move around. One might consider, for

example, a pack of small, autonomous submarines tracking an enemy

submarine. Members of the pack would have various and changing

functions. Some would maintain sensory contact with the target; others

would radio positional information to patrolling aircraft and/or

orbiting satellites. Still others would be specialists in relocating

and communicating the current positions of temporarily lost targets.

Destroyed or malfunctioning nodes could be replaced by dropping

replacements into the sea in the general location of a target. Tracking

,. of high-priority targets could be refined by adding more nodes as

needed.

A second example of a dispersed problem is air traffic control.

Ground control stations are distributed over a large area, as are the

aircraft being controlled. We can assume powerful computational

facilities both on board the aircraft and at the ground stations. This

resembles the sensor net problem for detecting and tracking aircraft,

except that we can assume that in the air traffic control problem the

aircraft are usually cooperative. Another difference is that the

control network must plan well-coordinated, appropriate commands to the

aircraft to direct their flight patterns.

Another distributed system is a reconfigurable communications

network. Nodes of the network might be mobile and contain computers.

To send a message from one node to another would typically involve

standard routing computations. Such computations would be more complex

in a network with mobile nodes (some on satellites, some on aircraft,

some on trucks). Line-of-sight and security considerations would limit

the permissible routes. Indeedt nodes of the network might be directed

to change location to serve certain special communication purposes. In
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this case too, com-mnication between nodes might be restricted and, if

individual nodes were to fail, it would be important for the network to

degrade only gradually.

The requirements of military command and control constitute another

example of a highly distributed problem. A carrier task force, for

example, might be spread over an area of hundreds of square miles.

Computational facilities will exist in each of the component ships and

in the aircraft aloft. How should the task force use these

computational resources and the distributed information available to it

to the best advantage in pursuing its mission? Clearly, conventional

hierarchical organizations are not well suited to the distributed nature

of the problem. New strategies must be evolved that take this special

factor into account.

Analogous situations can also be found in military logistics.ISupply, manufacturing, and maintenance and repair centers are typically

scattered over wide areas. Further steps to automate logistics

functions will require that their distributed nature be acknowledged

explicitly.

There are many other examples of distributed problems: cruise

missile squadrons, planetary probes, automated offices, and factory

robots all involve components distributed over space. The point we

consider it essential to stress here is that the effective solution of

these problems will require new advances in artificial intelligence

research.

II TECHNICAL ISSUES FOR DAI

Whether it is better to consider a distributed computational

complex to be composed of a single, integrated system or of several,

cooperating subsystems depends on the degree to which the components are

coupled to one another. When the coupling is extremely loose, it seems

more useful to think of the system as comprised of autonomous but

cooperating subsystems.
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There are several factors that militate in favor loose coupling

among the components of a distributed system. First, security, channel

capacity, and terrain all impose communicational restrictions upon the

nodes of distributed systems. Second, the problem of designing and

maintaining large complex systems is eased by modular designs in which

the system is decomposed into relatively independent segments.

Furthermore, loosely coupled DAI systems have an inherent

reliability/extensibility feature that makes such systems no worse than

linearly sensitive to either loss or gain of components. If individual

components of a loosely coupled system fail or are destroyed, the

remaining ones can be reorganized to carry on without any drastic

effects on overall performance. Conversely, if components are added,

the entire system does not have to be redesigned to use them

effectively. Finally, many distributed systems consist of humans

integrated with computer components. For such systems it is important

that the latter explicitly acknowledge the sophisticated role played by

their human conjuncts.

There are several approaches to designing DAI systems, and we shall

have space here to describe only some of the work being done at SRI.

Other approaches are briefly summarized in a paper edited by Davis [1].

At SRI we are investigating the technical problems inherent in designing

systems composed of several semiautonomous, cooperating AI systems.

Each component system, or agent, is assumed to have at best a partial

view of the entire problem and can itself contribute only part of the

solution. We are not imposing any sort of rigid hierarchical structure

on the agents, because we want to investigate the phenomenon Warren

M cCulloch called "the redundancy of potential command," in which that

agent with the most relevant knowledge about a particular problem is the

one that contributes most to its solution. In McCulloch's word: "The

problem remains the central one in all command and control systems. Of

necessity, the sysLem must enjoy a redundancy of potential command In

which the possession of the necessary urgent information constitutes

authority in that part possessing the information." (21
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Instead of relying on predesigned communication and organization

protocols, we expect to be able to achieve communication efficiency and

organizational flexibility by requiring each agent to plan its own

actions, taking into account the expected actions and knowledge of the

other agents. We include communicative actions among those an agent can

perform. Thus, an agent explicitly plans to inform and then does inform

other agents about facts it believes these other agents need to know.

In addition, an agent explicitly plans to ask and then does ask

questions of another agent whose answers, already known by the latter,

need to be known by the first agent. Communicative actions can also be

used to request that another agent perform a certain task or achieve a

certain goal. In general, communicative actions affect an agent's

cognitive state either by changing its knowledge or by changing its

goals.

We shall assume that the agents also have the ability to generate

and execute plans consisting of ordinary (noncommunicative) actions that

affect the world inhabited by the agents. So, for example, a

reconnaisance submarine performs a communicative action when it informs

one of its fellows about the presence of a target; it performs an

ordinary action when it surfaces. Of course, communicative and ordinary

actions will typically be intertwined in complex sequences. When

planning action sequences, agents must take into account the possible

actions of other agents. One way agents can predict what actions other

agents may take is to know the goals of other agents and then to

calculate what actions the latter might take to achieve their goals.

Conversely, one way agents can know the goals of other agents is to

observe their actions and then make hypotheses about the goals toward

which those actions are directed.

To gain the flexibility and efficiency inherent in systems of

agents that plan their own actions, each agent must have the ability to

represent and use certain complex types of knowledge. Each agent must

know the actions it can perform and the preconditions and probable

effects of these actions. It' must know the current "state of the
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world." It must have knowledge about the beliefs and goals (the

cognitive state) of other agents. It must know about the actions that

other agents can take. Techniques for representing and using this sort

of knowledge are currently being investigated in artificial intelligence

research projects. The major difficulties to be overcome are how to

generate and execute plans in dynamic worlds (in which there are other

agents of change), and how to represent and use knowledge about the

cognitive states of other agents. To illustrate some of the subtleties

that surround these problems, in the next section we shall discuss in

some detail the representation of knowledge about another agent's

beliefs.

III REPRESENTING KNOWLEDGE ABOUT ANOTHER AGENT'S BELIEFS

One of the most important problems in artificial-intelligence

research is the problem of how to represent knowledge so a computer

system can use it effectively. Intelligent agents of the kind we have

been discussing need ways to represent the world around them. One

technique for describing the world in a precise way is to use a logical

formalism like the first-order predicate calculus to make statements

about the world. We do not need to go into much detail here about what

the first-order predicate calculus is[3]. Suffice it to say that it is

a precise language that can be used in a computer system to represent

certain English sentences like "The Nimitz is in the Mediterranean,"

"There are presently no Japanese ships in the Baltic," and "Every

American oiler in the Atlantic is carrying a full cargo." We would

typically expect a very large number of such statements to be used by

each agent to describe its world.

Although it is rather straightforward to represent a wide variety

of sentences in a predicate calculus formalism, some topics present

particular difficulties. Among these are propositional attitudes. A

propositional attitude is a relation between an agent and a sentence.

For example, to say that agent Al believes that the Nimitz is in the
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Mediterranean is to state a relationship (or attitude) of belief between

agent Al and the sentence "The Nimitz is in the Mediterranean." This

problem is a central one in DAI systems because it is quite important

for one agent to be able to represent knowledge about what other agents

believe.

Let us examine just a few of the difficulties and discuss some

possible solutions that are now receiving special attention in

artificial intelligence research. One might think that one could

finesse the problem by attaching to an agent a special "database model"

of each of the other agents. As an example, suppose agent AD believes

that the Nimitz is in the Mediterranean, that agent AO believes that

agent Al believes it is in the Baltic, and that agent A0 believes that

agent A2 believes it is in the Atlantic. In our predicate calculus

language, we might represent AO's beliefs by a database of statementsIthat in turn contains two other databases of statements:

AO's database:

LOCATION(NIMITZ, MED)
***other statements of what AO believes about its world***

model of Al's database

LOCATION(NIMITZ, BALTIC)
***other statements of what AO believes Al believes

about its world***

model of A2's database

LOCATION(NIMITZ, ATLANTIC)
***other statments of what AO believes A2 believes

about its world***

This straightforward approach is appealing but, as Moore [41 has

pointed out, it suffers from fatal problems. There Is just no way to



use this "database approach" so that we can simultaneously distinguish

among the statements "AO believes that Al believes the Nimitz is not in

the Mediterranean," "AO believes that Al doesn't believe the Nimitz is

in the Mediterranean," and "AO doesn't know whether or not Al believes

the Nimitz is in the Mediterranean."

Another problem with the database approach is that it is difficult

to use it efficiently to distinguish between the two statements "AO

believes that Al either believes the Nimitz is in the Mediterranean or

believes the Nimitz is in the Baltic" and "AO believes that Al believes

that either the Nimitz is in the Mediterranean or the Nimitz is in the

Baltic." (These statements are different and the difference could be

crucial! In the first case, AO believes that Al itself is sure about

the Nimitz's location, even though AO isn't sure which of these definite

statements Al believes. In the second case, AO believes that Al isn't

sure about the Nimitz's location.)

Another approach to the problem of representing propositional

attitudes is to use a modal logic to reason about relations between an

agent and propositions. Thus, we might formally represent the statement

"Al believes that the Nimitz is in the Mediterranean" by the formula

BELIAl, LOCATION(NIMITZ, MED)] ,

where we take BEL to be a modal operator.

Although modal logics have been thoroughly studied in the

literature of philosophical logic, we do not yet have adequate

computational techniques for automatic reasoning in modal logic. One of

the difficulties is that operators like BEL must have a property called

referential opacity. This property simply means that one cannot employ

the usual rule of substituting a term for its equal within the scope of

a BEL operator. For otherwise, from the two statements "Al believes the

Nimitz is in the Mediterranean" and "the Mediterranean is the Roman

Sea," we could deduce that "Al believes that the Nimitz is in the Roman
Sea." We would not normally want to deduce this latter statement from
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the first two, because Al might not know that the Mediterranean and the

Roman Sea were one and the same.

Recent research has explored ways in which ordinary first-order

predicate calculus can be used to represent statements of belief. Moore

[41 represents belief statements in terms of possible worlds. His

method is based on representing the possible-world semantics of modal

logic within ordinary first-order logic. His way of representing a

statement like "Al believes that the Nimitz is in the Mediterranean" is

tantamount to expressing it in a manner something like: "In all the

possible worlds that are consistent with what Al believes, the Nimitz is

in the Mediterranean." Moore also applies his technique in exploring

the relationship between knowledge and action, a topic that is very

important for DAI research. Appelt [5) has developed an automatic

system for planning "communicative actions," based in part on Moore's

formalism for representing statements about what other agents believe.

Another technique for representing statements about what agents

believe is simply to express a relationship between an agent and a

string of symbols that encodes the statement believed. Konolige [61

has investigated this technique in the context of DAI applications. In

this method, the statement "Al believes that the Nimitz is in the
Mediterranean" would be expressed in a manner something like "Al's list

of statements contains the statement 'The Nimitz is in the

Mediterranean' ." It is important to notice that this approach uses a

statement that explicitly refers to another agent's list of statements

and to a specific statement asserted to be in that list. It thus

differs from the database approach in which no explicit mention is made

of statements (as such) and of databases (as such). Current research is

exploring efficient ways of using formalisms such as these to represent

and use knowledge about what other agents believe.

Problems of representing and reasoning about belief statements are

not the only ones in DAI research. We examined these problems here

merely to .llustrate some important new conceptual research tasks on

-4-h pr .ess must be made before flexible DAI systems can be employed.
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Before concluding this section on DAI research issues, we might mentio7

also the problem of generating plans in which the component actions can

be executed in parallel and in which other agents are simultaneously

executing their own plans. New planning formalisms are needed that are

sufficiently powerful to express these possibilities. Recent work by

Rosenschein [71, employing propositional dynamic logic, is laying a

foundation for plan synthesis procedures that are better suited to DAI

problems.

IV THE IMPACT OF DAI ON At

Besides the intrinsic interest in the development of DAI techniques

for the kinds of applications mentioned by us at the beginning of this

chapter, there are several reasons work on DAI can be expected to

contribute to (and may even be a prerequisite for) progress in ordinary

artificial intelligence. First, to be sufficiently "intelligent," a

system may have to be so complex and contain so much knowledge that it

will be able to function efficiently only if it is partitioned into many

loosely coupled subsystems. Kornfeld and Hewitt's "scientific

community" metaphor [8], Minsky's "society of minds" [91, and (to some

degree) "frame-based" systems [101 all proclaim "no At without DAI."

Work in DAI also helps sharpen our intuitions and techniques for

explicit reasoning about knowledge, actions, deduction, and planning.

In our opinion, we have yet to devise entirely satisfactory methods for

representing beliefs, plans, and actions so that these concepts can be

reasoned about. The objective clarity gained by considering how one At

system can reason about another should illuminate our study as to how an

At system can reason about itself.

The methods used by one Al system for reasoning about the actions

of other At systems will also be useful for reasoning about other

dynamic (but unintelligent) processes in the environment. (It should be

noted that such At systems might occasionally make the mistake of
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attributing planned behavior to purposeless processes and thus might

develop animistic theories about its environment.) Previous work in Al

planning methods largely dealt with only static environments.

DAI work will contribute to our understanding of the process of

natural-language communication. The "communicative acts" performed

between intelligent systems serve as an abstract model of some aspects

of natural-language generation and understanding. Viewing the process

abstractly may clarify certain problems in natural-language

comiminication.

Perhaps most importantly, an AI system that can reason about other

AI systems can also reason about its human user so as to maximize its

utility to that user.

V CONCLUSIONS

We have described certain computational tasks that are spatially

dispersed. Because of comminicational restrictions and other factors,

we are led to consider networks of loosely coupled distributed

artificial intelligence (DAI) systems. Among the important conceptual

problems in designing such networks is the complex task of representing

and using information about what one part of the network "believes"

about another part. We have considered various aspects of this problem

in some detail and have briefly outlined some potential solutions.

One ultimate objective of our research in DAI is to design networks

of systems that exhibit what McCulloch called a "redundancy of potential

command"; that is, we want these networks to have some ability to

organize and reorganize themselves according to the amount and quality

of knowledge possessed by each node. Those nodes with the most relevant

information about the problem at hand should have the most control. It

is this flexible feature that will make DAI systems especially useful in

the kinds of applications described at the beginning of this chapter.

1.i
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